Г

lssue No.	: CE-VFKA4-CE-0-7
Date of Issue	: May 27, 2008
Classification	: New , Changed

PRODUCT SPECIFICATION FOR APPROVAL

Product Description	: Aluminum Electrolytic Capacitor
Customer Part Number	:
Product Part Number Country of Origin Applications	 V type FK series (High.temp.Pb free reflow type) Japan, China (Printed on the packaging label) It has the intention of being used for a general electronic circuit given in a notice matter (limitation of a use). On the occasion of application other than the above, even person in charge of our company needs to inform in advance.

※ If you approve this specification, please fill in and singn the below and return 1copy to us.

Approval No	:			
Approval Date	:			
Excecuted by	:			
		(signature)		
Title	:			
Dept.	:			

Capacitor Business Unit Panasonic Electronic Devices Co.,Ltd. 25.Kohata-nishinaka, Uji City, Kyoto, 611-8585, Japan Phone :+81-774-32-1111	Prepared by Contact Person Singnature Name(Print) Title	: Panasonic Electronic Devices Japan Co.,Ltd. Aluminum Capacitor Division Development Team :
Phone :+81-774-33-3209(Direct) Fax :+81-774-32-3189	Checked by Singnature Name(Print) Title Authorized by	Haruhiko Handa : Engineer : Hisao Nagara
	Singnature Name(Print) Title	: Manager : Yuji Midou : General Manager of Engineering
		No.3996037-8Q2LK
		Panasonic

Revision Record

Customer Part No.	Product Part No.	Note
	V type FK series (High.temp.Pb free reflow type)	Guideline-ALV-S2-2

No.	Ρg	Revised Date	Enforce Date	Contents	Approval	Accepted No.
Initi	al Da	ite May 27,	, 2008	New	Y	
\square						
\square						
\square						
\square						
\square						
						,
\square						
\square						
\square						
\square						
\square						
\square						

Product Specificatio	Product Specification			
V type FK series (High. temp. Pb free	V type FK series (High. temp. Pb free reflow type)			
Contents Notice matter	P.1			
Scope	P.2			
Parts Number	P.2			
Parts Lists	P.3 ~ P.5			
Can Size Table	P.6			
Dimensions	P.7			
Constructions	P.8			
Marking	P.8			
Lot No. System	P.9			
Standard Rating	P.10			
Performance Characteristics	P.11 ~ P.14			
Other Characteristics	P.14			
Reflow Soldering and Temperature Profile	P.15			
Taping Shape and Dimensions	P.16 ~ P.18			
Carrier Tape Packing Method	P.19 ~ P.20			
Package Label Example	P.21 ~ P.22			
Application Guidelines	Guidelines-1 ~ 4			

	Pr	oduct Specification	CE-VFKA4-CE-0-7
	V type F	K series (High. temp. Pb free reflow type)	1
Not	ice matter		
٠	Law and regulation which	ch are applied	
	• •	with the RoHS Directive (Restriction of the use of certain cal and electronic equipment (DIRECTIVE 2002/95/EC).	Hazardous
	 No Ozone Depleting (are used in producing 	Chemicals(ODC's), controlled under the Montreal Protocol g this product.	Agreement,
	• We do not PBBs or P	BDEs as brominated flame retardants.	
		are used for this product are registered as "Known Chemic Examination and Regulation of Manufacture, etc. of Chemi	
		ch followed export related regulations, such as foreign exc occasion of export of this product Thank you for your cons	
•	Limitation of a use		
	and industrial robots. High reliability and sa harm to a human life which suited the use	afety are required [be / a possibility that incorrect operation or property] more. When use is considered by the use, the separately need to be exchanged.	of this product may do
•	Unless otherwise specif	ied, the product shall conform to JIS 5101-18-2	
•	Country of origin : JAPA	N, CHINA	
♦	Manufacturing factory :	Panasonic Electronic Devices Japan Co.,Ltd. 1285, Sakutaguchi, Asada,Yamaguchi City, Yamaguchi 753-8536 Japan	
		Panasonic Manufacturing Xiamen Co., Ltd. No. 17 Chuang Xin Road, Xiamen Torch Hi-Tech Industr Xiamen, Fujian, China 361000	ial Development Zone,

Product Specification	CE-VFKA4-CE-0-7
V type FK series (High. temp. Pb free reflow type)	2

1. Scope

Fixed capacitors for use in electronic equipment, Surface Mount Type Aluminum electrolytic capacitors with non-solid electrolyte.

2. Parts number

 EEE
 FK
 OO
 OOO
 △A
 □

 2-1
 2-2
 2-3
 2-4
 2-5
 2-6

- 2-1 Surface Mount Type Aluminum Electrolytic Capacitor (Lead-Free Products.)
- 2-2 FK series
- 2-3 Rated Voltage Code

Voltage code	OJ	1A	1C	1E	1V	1H	1J	1K	2A
Rated voltage(V.DC)	6.3	10	16	25	35	50	63	80	100

• 2-4 Capacitance Code: Indicate capacitance In μF by 3 letters. The first 2 figures are actual values and the third denotes the number of zeros.

"R" denotes the decimal point and all figures are the actual number with "R".

 $ex. \ 0.1 \mu F \rightarrow R10 \ , \ 1 \mu F \rightarrow 1 R0 \ , \ 10 \mu F \rightarrow 100$

2-5 A : High temperature reflow type

- UA : High temperature reflow type Expanded capacitance range
- XA : High temperature reflow type Size code D8
 - * Due to the method used by our company to express taping part numbers, we have eliminated "1" from the taping part numbers.
- ex. EEEFK0J101UAR \rightarrow EEEFKJ101UAR , EEEFK0J331XAP \rightarrow EEEFKJ331XAP

*Products with the case size of $\varphi 4 \sim \varphi 10$ (Size code B ~ G) are produced only in Japan. *Products with the case size of $\varphi 12.5 \sim \varphi 18$ (Size code H ~ K) are produced only in China.

• 2-6 Suffix Code for Appearance: Taping Code

R	12.0mm width (Size code "B~C")
Р	16.0mm width (Size code "D,D8~E")
I I	24.0mm width (Size code "F \sim G")
Q	32.0mm width (Size code "H")
М	44.0mm width (Size code "J~K")

See the drawing in item 11 for the polarity alignment.

Product	Specification
	000000000000000000000000000000000000000

CE-VFKA4-CE-0-7

V type FK series (High. temp. Pb free reflow type)

3

Parts I	ists
---------	------

				Tangent of	Leakage	Impedance	Rated Ripple
Size	Taping Part No.	R.V.	Cap.	Loss Angle	Current	[Ω]	Current
Code		V.DC	[µF]	(tanδ)	[µA]	max.	[m A rm s]
				max.	max.	(100kHz)	max.
			(120Hz)		(After	(+20°C)	(100kHz)
			(20°C)	(20°C)	2 min.)		(105°C)
В	EEEFK0J220AR	6.3	22	0.26	3.0	1.35	90
В	EEEFKJ470UAR	6.3	47	0.26	3.0	1.35	90
С	EEEFK0J470AR	6.3	47	0.26	3.0	0.7	160
С	EEEFKJ101UAR	6.3	100	0.26	6.3	0.7	160
D	EEEFK0J101AP	6.3	100	0.26	6.3	0.36	240
D	EEEFK0J221AP	6.3	220	0.26	13.8	0.36	240
D8	EEEFKJ331XAP	6.3	330	0.26	20.7	0.34	280
E	EEEFK0J331AP	6.3	330	0.26	20.7	0.26	300
F	EEEFK0J471AP	6.3	470	0.26	29.6	0.16	600
F	EEEFK0J102AP	6.3	1000	0.26	63.0	0.16	600
G	EEEFK0J152AP	6.3	1500	0.26	94.5	0.08	850
H13	EEEFK0J332AQ	6.3	3300	0.30	207.9	0.06	1100
J16	EEEFK0J682AM	6.3	6800	0.36	428.4	0.035	1800
В	EEEFK1A220AR	10	22	0.19	3.0	1.35	90
В	EEEFKA330UAR	10	33	0.19	3.3	1.35	90
С	EEEFK1A330AR	10	33	0.19	3.3	0.7	160
D	EEEFK1A151AP	10	150	0.19	15.0	0.36	240
D8	EEEFKA221XAP	10	220	0.19	22.0	0.34	280
Е	EEEFK1A221AP	10	220	0.19	22.0	0.26	300
F	EEEFK1A331AP	10	330	0.19	33.0	0.16	600
F	EEEFK1A471AP	10	470	0.19	47.0	0.16	600
F	EEEFK1A681AP	10	680	0.19	68.0	0.16	600
G	EEEFK1A102AP	10	1000	0.19	100.0	0.08	850
H13	EEEFK1A222AQ	10	2200	0.21	220.0	0.06	1100
J16	EEEFK1A472AM	10	4700	0.25	470.0	0.035	1800
K16	EEEFK1A682AM	10	6800	0.29	680.0	0.033	2060
1110		10	0000	0.20	000.0	0.000	2000
В	EEEFK1C100AR	16	10	0.16	3.0	1.35	90
B	EEEFKC220UAR	16	22	0.16	3.5	1.35	90
C	EEEFK1C220AR	16	22	0.16	3.5	0.7	160
<u>C</u>	EEEFKC470UAR	16	47	0.16	7.5	0.7	160
D	EEEFK1C470AP	16	47	0.16	7.5	0.36	240
D	EEEFK1C680AP	16	68	0.16	10.8	0.36	240
D	EEEFK1C101AP	16	100	0.16	16.0	0.36	240
D8	EEEFKC151XAP	16	150	0.16	24.0	0.34	280
D8	EEEFKC221XAP	16	220	0.16	35.2	0.34	280
E	EEEFK1C221AP	16	220	0.16	35.2	0.26	300
F	EEEFK1C331AP	16	330	0.16	52.8	0.16	600
 F	EEEFK1C471AP	16	470	0.16	75.2	0.16	600
G	EEEFK1C681AP	16	680	0.16	108.8	0.08	850
H13	EEEFK1C152AQ	16	1500	0.16	240.0	0.06	1100
		16					
J16	EEEFK1C332AM		3300	0.20	528.0	0.035	1800
K16	EEEFK1C472AM	16	4700	0.22	752.0	0.033	2060

*Products with the case size code B ~ G are produced only in Japan. *Products with the case size code H ~ K are produced only in China.

Product	Specification
	0000000000

CE-VFKA4-CE-0-7

V type FK series (High. temp. Pb free reflow type)

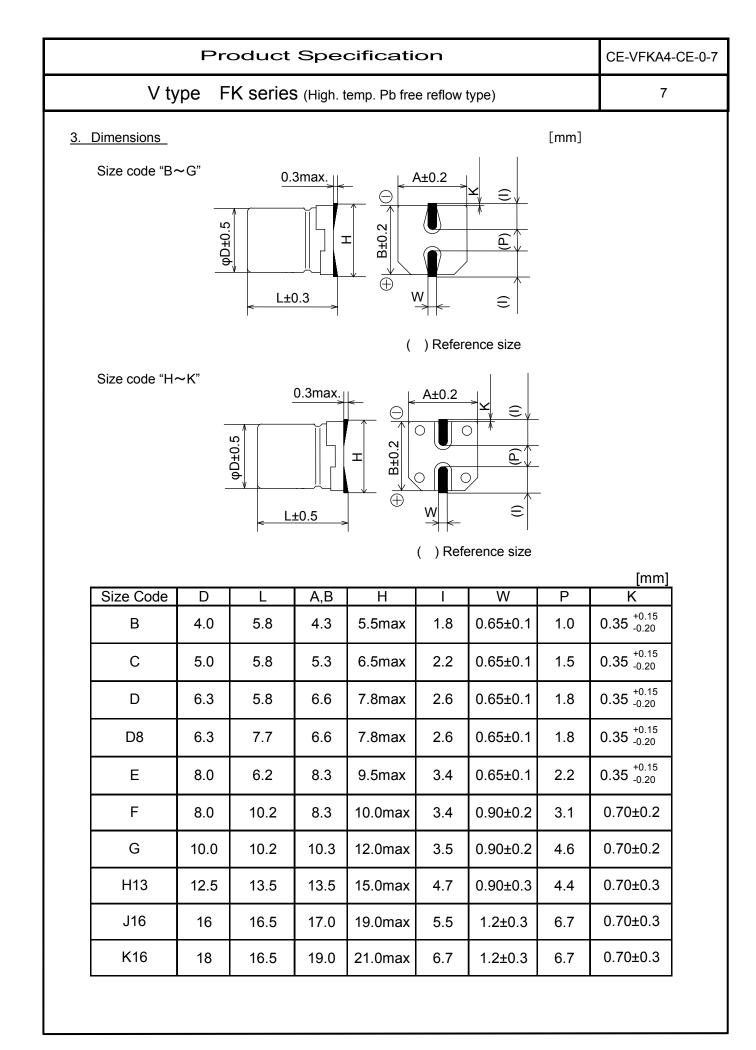
4

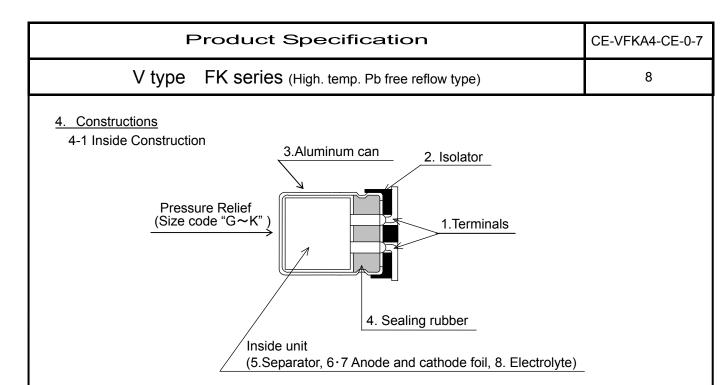
Parts I	ists
---------	------

0.	Taking David Na		0	Tangent of	Leakage	Impedance	Rated Ripple
Size	Taping Part No.	R.V.	Cap.	Loss Angle	Current	[Ω]	Current
Code		V.DC	[µF]	(tanō)	[µA]	max.	[m A rm s]
			(100)	max.	max.	(100kHz)	max.
			(120Hz)	(120Hz)	(After	(+20°C)	(100kHz)
		<u> </u>	(20°C	(20°C)	2 min.))	(105°C)
B	EEEFK1E100AR	25	10	0.14	3.0	1.35	90
C	EEEFK1E220AR	25	22	0.14	5.5	0.7	160
<u> </u>	EEEFKE330UAR	25	33	0.14	8.2	0.7	160
D	EEEFK1E330AP	25	33	0.14	8.2	0.36	240
D	EEEFK1E470AP	25	47	0.14	11.7	0.36	240
D	EEEFK1E680AP	25	68	0.14	17.0	0.36	240
D8	EEEFKE101XAP	25	100	0.14	25.0	0.34	280
E	EEEFK1E101AP	25	100	0.14	25.0	0.26	300
F	EEEFK1E151AP	25	150	0.14	37.5	0.16	600
F	EEEFK1E221AP	25	220	0.14	55.0	0.16	600
F	EEEFK1E331AP	25	330	0.14	82.5	0.16	600
G	EEEFK1E471AP	25	470	0.14	117.5	0.08	850
H13	EEEFK1E102AQ	25	1000	0.14	250.0	0.06	1100
J16	EEEFK1E152AM	25	1500	0.16	375.0	0.035	1800
J16	EEEFK1E222AM	25	2200	0.16	550.0	0.035	1800
K16	EEEFK1E332AM	25	3300	0.18	825.0	0.033	2060
В	EEEFK1V4R7AR	35	4.7	0.12	3.0	1.35	90
В	EEEFKV100UAR	35	10	0.12	3.5	1.35	90
С	EEEFK1V100AR	35	10	0.12	3.5	0.7	160
С	EEEFK1V220AR	35	22	0.12	7.7	0.7	160
D	EEEFK1V330AP	35	33	0.12	11.5	0.36	240
D	EEEFK1V470AP	35	47	0.12	16.4	0.36	240
D8	EEEFKV680XAP	35	68	0.12	23.8	0.34	280
F	EEEFK1V101AP	35	100	0.12	35.0	0.16	600
F	EEEFK1V151AP	35	150	0.12	52.5	0.16	600
F	EEEFK1V221AP	35	220	0.12	77.0	0.16	600
G	EEEFK1V331AP	35	330	0.12	115.5	0.08	850
H13	EEEFK1V471AQ	35	470	0.12	164.5	0.06	1100
H13	EEEFK1V681AQ	35	680	0.12	238.0	0.06	1100
J16	EEEFK1V102AM	35	1000	0.12	350.0	0.035	1800
J16	EEEFK1V152AM	35	1500	0.12	525.0	0.035	1800
				0			
H13	EEEFK1H331AQ	50	330	0.12	165.0	0.12	900
H13	EEEFK1H391AQ	50	390	0.12	195.0	0.12	900
J16	EEEFK1H471AM	50	470	0.12	235.0	0.073	1610
J16	EEEFK1H561AM	50	560	0.12	280.0	0.073	1610
J16	EEEFK1H681AM	50	680	0.12	340.0	0.073	1610
J16	EEEFK1H102AM	50	1000	0.12	500.0	0.073	1610
J 10		50	1000	0.12	500.0	0.073	1010

*Products with the case size code B ~ G are produced only in Japan. *Products with the case size code H ~ K are produced only in China.

		Prc	oduc	t Spe	ecificat	ion		CE-VFKA4-CE-0-7
		V type Fł	< serie	€S (High	. temp. Pb fr	ee reflow ty	vpe)	5
ſ	Size Code	Taping Part No.	R.V. V.DC	Cap. [µF]	Tangent of Loss Angle (tanδ)	Leakage Current [µA]	Impedance [Ω] max.	Rated Ripple Current [mA rms]
				(120Hz) (20℃)	(20°℃)	max. (After 2 min.)	(100kHz) (+20℃)	max. (100kHz) (105℃)
ļ	H13	EEEFK1J151AQ	63	150	0.10	94.5	0.16	800
	H13	EEEFK1J221AQ	63	220	0.10	138.6	0.16	800
	J16	EEEFK1J471AM	63	470	0.10	296.1	0.082	1410
	K16	EEEFK1J681AM	63	680	0.10	428.4	0.08	1690
ļ					<u> </u>			
	H13	EEEFK1K680AQ	80	68	0.08	54.4	0.32	500
l	H13	EEEFK1K101AQ	80	100	0.08	80.0	0.32	500
l	H13	EEEFK1K151AQ	80	150	0.08	120.0	0.32	500
[J16	EEEFK1K331AM	80	330	0.08	264.0	0.17	793
	K16	EEEFK1K471AM	80	470	0.08	376.0	0.153	917
[
[H13	EEEFK2A470AQ	100	47	0.07	47.0	0.32	500
	H13	EEEFK2A680AQ	100	68	0.07	68.0	0.32	500
Γ	J16	EEEFK2A101AM	100	100	0.07	100.0	0.17	793
[J16	EEEFK2A151AM	100	150	0.07	150.0	0.17	793
[K16	EEEFK2A221AM	100	220	0.07	220.0	0.153	917
	K16	EEEFK2A331AM	100	330	0.07	330.0	0.153	917
[


*Products with the case size code H ~ K are produced only in China.


V type FK series (High. temp. Pb free reflow type)

6

V.DC Cap.(µF)	6.3	10	16	25	35	50	63	80	100
4.7					В				
10			В	В	(B),C				
22	В	В	(B),C	С	C				
33		(B),C		(C),D	D				
47	(B),C		(C),D	Ď	D				H13
68			Ď	D	D8			H13	H13
100	(C),D		D	D8,E	F			H13	J16
150		D	D8	F	F		H13	H13	J16
220	D	D8,E	D8,E	F	F		H13		K16
330	D8,E	F	F	F	G	H13		J16	K16
390						H13			
470	F	F	F	G	H13	J16	J16	K16	
560						J16			
680		F	G		H13	J16	K16		
1000	F	G		H13	J16	J16			
1500	G		H13	J16	J16				
2200		H13		J16					
3300	H13		J16	K16					
4700		J16	K16						
6800	J16	K16							
D: D8: E: F: G: H13: J16:	[mm] $\varphi 4 \times 5.8L$ $\varphi 5 \times 5.8L$ $\varphi 6.3 \times 5.3$ $\varphi 6.3 \times 7.3$ $\varphi 8 \times 6.2L$ $\varphi 8 \times 10.2$ $\varphi 10 \times 10.2$ $\varphi $	- 8L 7L 2L 2L 3.5L 5L							
*Products with the ca *Products with the ca								a.	

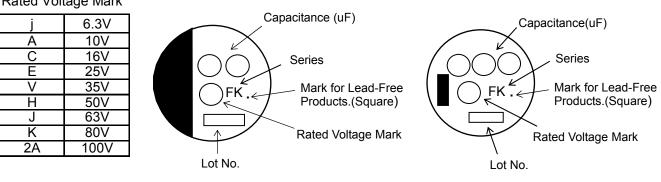
Can Size [Size code] (Standard type)

4-2 Construction parts

	Parts	Materials			Parts	Materials
1	Terminal	Bi contained tin plated Tinned Copper-Clad Steel wire	(≦φ10)	5	Separator	Cellulose
		Tinned Copper-Clad Steel wire	(≧φ12.5)	6	Anode Foil	High Purity Aluminum Foil
2	Isolator	Thermo-plastic Resin		7	Cathode Foil	Aluminum Foil
3	Aluminum Can	Aluminum		8	Electrolyte	Organic Solvent , Organic Acid
4	Sealing Rubber	Synthetic rubber (IIR)				(No Quaternary Salt)

5. Marking

Marking Color : BLACK


Following items shall be marked on the body of Capacitor.

- a) Rated Voltage Mark
- b) Capacitance
- c) Negative Polarity
- d) Series Mark
- e) Lot No. (It indicates to Lot No. System)

Size code "B~G"

f) Mark for Lead-Free Products.

Rated Voltage Mark

Size code "H~K"

Panasonic Electronic Devices Co., Ltd.

Produ	ct Specif	ication		CE-VFKA4-CE-0-7
V type FK se	r ies (High. temp	b. Pb free reflow	type)	9
LOT No. SYSTEM A lot No. shall be given on the b For those made in JAPAN (Chi Size Code (B~G)		e in the followin	ıg way.	
Marking with 3 digits 8 A 8 In	— month(1 to 9 — line code in a		duced in Aug. 2008, u	
For those made in CHINA (Chi Size Code (H13~K16)		under a line J day(A to Z for 1st		n∼31st)
a reduction year	n ro du o	tion month	I production	data
production year 8:2008 9:2009 10:2010 Indicating with the last digit of a year.	1:January 2:February 3:March 4:April	tion month 7:July 8:August 9:September O:October N:November D:December	production A=1 date 1= B=2 2= C=3 3= ~ 4= Y=25 5= Z=26 5=	27 date 28 29 30

Product Specification	CE-VFKA4-CE-0-7
V type FK series (High. temp. Pb free reflow type)	10

6. Standard rating

	olandara raling										
Nº	Item		Ratings								
1	Category Temperature Range		-55°C ∼ +105°C								
2	Rated Voltage Range		6.3 V.DC ~ 100 V.DC								
3	Capacitance Range		4.7 μF ~ 6800 μF (120Hz 20°C)								
4	Capacitance Tolerance					±20%				(120H	z 20°C)
5	Surge Voltage	R.V.	6.3	10	16	25	35	50	63	80	100
	(V.DC)	S.V. 8 13 20 32 44 63 79 100 125					125				
6	Rated Ripple Current		Parts lists and Table 3								
7	Impedance				F	Parts list	S				

V type FK series (High. temp. Pb free reflow type)

11

7. Performance Characteristics

No	lterr	1	Performance Characteristics		Test				
1	Leakage C	urrent	\leq I=0.01CV or 3µA whichever is the	Series F	Resistor : 1000)Ω±10Ω			
			greater.	Applied Voltage : Rated voltage					
			ا I:Leakage current C:Capacitance	Measur	Measuring : After 2 minutes				
			V:Rated voltage						
2	Capacitano	œ	Within the specified capacitance tolerance.	Measuring Frequency : 120Hz±20%			20%		
			Measur	ng Circuit	: Equivale	nt series circuit			
				Measur	ng Voltage	: +1.5 V.D	C ~ +2 V.DC		
						(<u>≦</u> 0.5 V fo	or AC.)		
З	Tangent of	Loss	Less than tha table 1 value of item 8.	Measur	ng Frequency	: 120Hz±2	20%		
	Angle			Measur	ng Circuit	: Equivale	nt series circuit		
	(tanδ)		Added 0. 02 per 1000µF for items with	Measuri	ng Voltage	: +1.5 V.D	C ~ +2 V.DC		
			over 1000µF items.			(≦0.5Vfc	or AC.)		
4	Charact-	Step 2	Impedance Ratio:						
	eristics at		Less than the table 2 value of item 8	Ste	p Test Tempe	erature(°C)	Time		
	High and		ratio against step 1.	1	20		—		
	Low Tem-	Step 4	Leakage Current:	2	-25±3,-40±	£3,-55±3	30 min		
	perature		$\leq 800\%$ of the value of item 7.1.	3	20		10 min~15 mi		
			Capacitance Change:	4	105:	±2	30 min		
			Within ±25% of the value in step 1.	5		±2	10 min~15 mi		
			Tangent of Loss Angle (tanδ):	Impeda	nce should be n	neasured 1	20Hz±10%.		
	-		≦the value of item 7.3.						
5	Surge		Leakage Current:	Test ten	nperature : 15°C	~35℃			
			≦the value of item 7.1.				100 ± 50		
			Capacitance Change:	Series I	Protective Resis	tance: R	= <u> </u>		
			Within $\pm 15\%$ of initial measured value.	_		4 O			
			Tangent of Loss Angle (tanδ):		Protective resist)		
			≦the value of item 7.3.	-	Capacitance(µF	-)		
			Appearance:		tage : Surge	-			
			No significant change can be observed.	Applied	voltage : 1000	-			
					UN a	ind 5 min 30	JS OFF.		
6	Robustnes	s of	There is no damage or breakage after test.	After fivi	ng the capacitor	s the termin	hals are		
Ŭ	Terminatio				n a vertical direc				
	(Tensile)				graduallyincrea		reached		
	(10110110)				e specified belo				
				second	-				
				[Pull Strength	101	N		
					Keep time	10s±			

Product Specification

V type FK series (High. temp. Pb free reflow type)

No	Item	Performance Characteristics	Test
	Vibration	Capacitance :	Frequency : 10Hz~55Hz (1 minute per cycle.)
		During test, measured value shall be	Total amplitudes : 1.5 mm
		stabilized.(Measured several times	Direction and duration of vibration :
		within 30 min. before completion of	It is done in the X,Y,Z axis direction for 2
		test)	hours each, with a total of 6 hours.
		Appearance :	
		No significant change can be observed.	
		Capacitance Change :	
		Within ±5% of initial measured value.	
8	Solderability	More than 95% of the terminal surface	Solder Type : H60A,H60S,or H63A(JIS Z3282)
Ŭ	condonationaly	shall be covered with new solder.	Solder Temperature : 235°C±5°C
		(Exclude the cross-section of)	Immersing Time : 2s±0.5s
		cutting lead edge.	Immersing Depth : Dip the terminals for Approx.
			0.5mm~1mm thick
			Flux : Approx 25% rosin(JIS K5902) in
			Ethanol(JIS K8101)
9	Resistance to	Leakage Current :	After reflow soldering (item 9)
Ű	Soldering heat	\leq the value of item 7.1.	The capacitor shall be left at room temperature
	colucing neur	Capacitance Change :	for before measurement.
		Within $\pm 10\%$ of initial measured value.	
		Tangent of Loss Angle $(tan\delta)$:	
		\leq the value of item 7.3.	
	Appearance :		
		No significant change can be observed.	
10	Solvent	There shall be no damage end legibly	Class of Reagent : Isopropyl Alcohol
	Resistance of	marked. Marking can be deciphered easily.	Test Temperature : 20°C~25°C
	the Marking		Immersing time : 30s±5s
	and maning		
11	Damp Heat	Leakage Current :	Test Temperature : 40°C±2°C
	(steady state)	\leq the value of item 7.1.	Relative Humidity : 90%~95%
	()	Capacitance Change :	Test Duration : 240hours±8hours
		Within $\pm 15\%$ of initial measured value.	
		Tangent of Loss Angle (tanδ) :	After subjected to the test, the capacitors shall
		$\leq 120\%$ the value of item 7.3.	be left for 2 hours at room temperature and
		Appearance :	room humidity prior to the measurement.
		No significant change can be observed.	
L		No significant change can be observed.	

Product Specification

V type FK series (High. temp. Pb free reflow type)

13

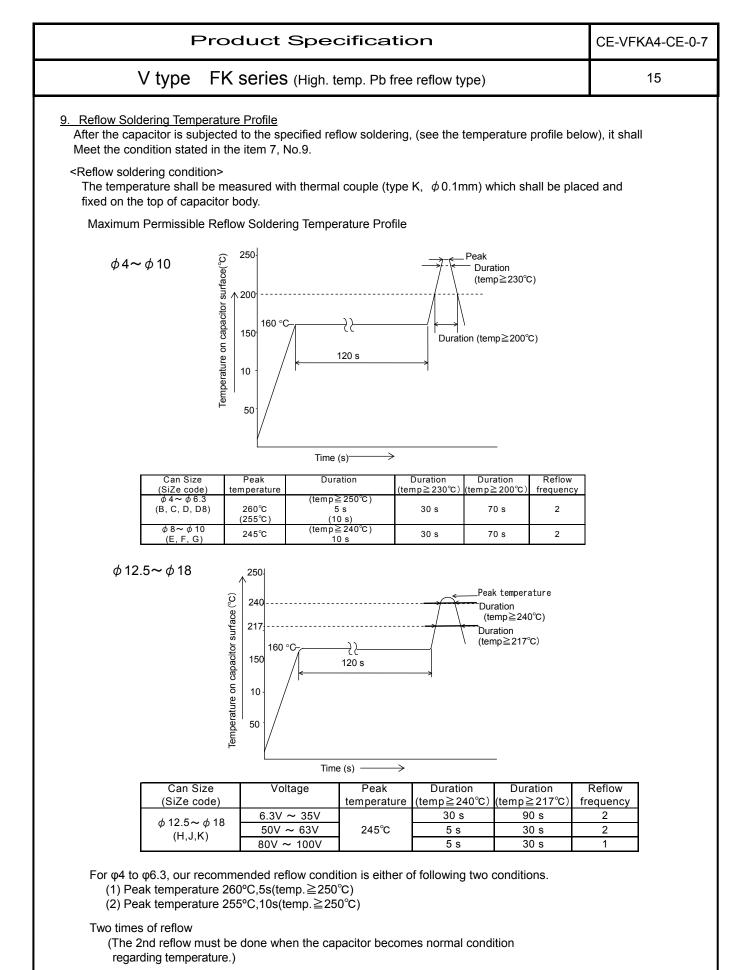
No		Performance Characteristics	Test	
12	Pressure Relief	Pressure relief shall be operated without	AC. Current Method	
	(Size code	any hazardous expulsion or emission of		
	"G ~ K")	flame.		
		No emission of gas after 30 minutes of		
		the voltage application also meets the	Power supply	
		specification.		
			50Hz or 60Hz (A):AC. ammeter R:Series n	
			(\underline{V}) :A C. voltmeter Cx :Tested	capacitor
			Applied Voltage :	
			AC. voltage equals to R.V. x0	.7 or
			250 V(rms) whichever is sma	ller.
			Capacitance (µF)	D.C. resistance(Ω)
			≦1	1000±100
			>1 ≦10	100±10
			>10 ≦100	10±1
			>100 ≦1000	1±0.1
			>1000 ≦10000 0.1±0.01	
			>10000 ※	
			* When capacitance is over 10000µF,the	
			value of series resistance equals to the half	
			of the tested capacitor's impedance.	
			Reverse Voltage Method	
			A	
			+	ļ
			D.C	~ 7777
			Power supply	
			-	φ +
			(A):D.C. ammeter Cx:Teste	ed capacitor
			Nominal Diamether (mm)	D.C. Current(A)
			≦ 22.4	1 (const)
			> 22.4	10 (const)

V type FK series (High. temp. Pb free reflow type)

No	Item	Performance characteristics	Test
13	Endurance	Leakage Current :	Test Temperature : 105°C±2°C
		\leq the value of item 7.1.	Test Duration : $2000 + \frac{72}{0}$ hours ($\varphi 4 \sim \varphi 10$)
		Capacitance change :	: 5000+ ⁷² ₀ hours (φ12.5~φ18)
		Within ±30% of initial measured value.	Applied Voltage : Rated voltage
		Tangent of Loss Aangle (tanδ):	
		\leq 200% of the value of item 7.3.	After subjected to the test, the capacitors shall
		Appearance :	be left at room temperature and room humidity
		No significant change can be observed.	for 2 hours prior to the measurement.
14	Shelf Life	Leakage Current :	Test Temperature : 105°C±2 °C
		\leq the value of item 7.1.	Test Duration : 1000 ⁺⁴⁸ 0 hours
		Capacitance Change :	
		Within ±30% of initial measured value.	After subjected to the test, D.C. rated
		Tangent of Loss Angle (tanδ) :	voltage shall be applied to the capacitors for
		\leq 200% of the value of item 7.3.	30 minutes as post-test treatment after left
		Appearance :	at the room temperature and humidity for 2
		No significant change can be observed.	hours prior to the measurement.

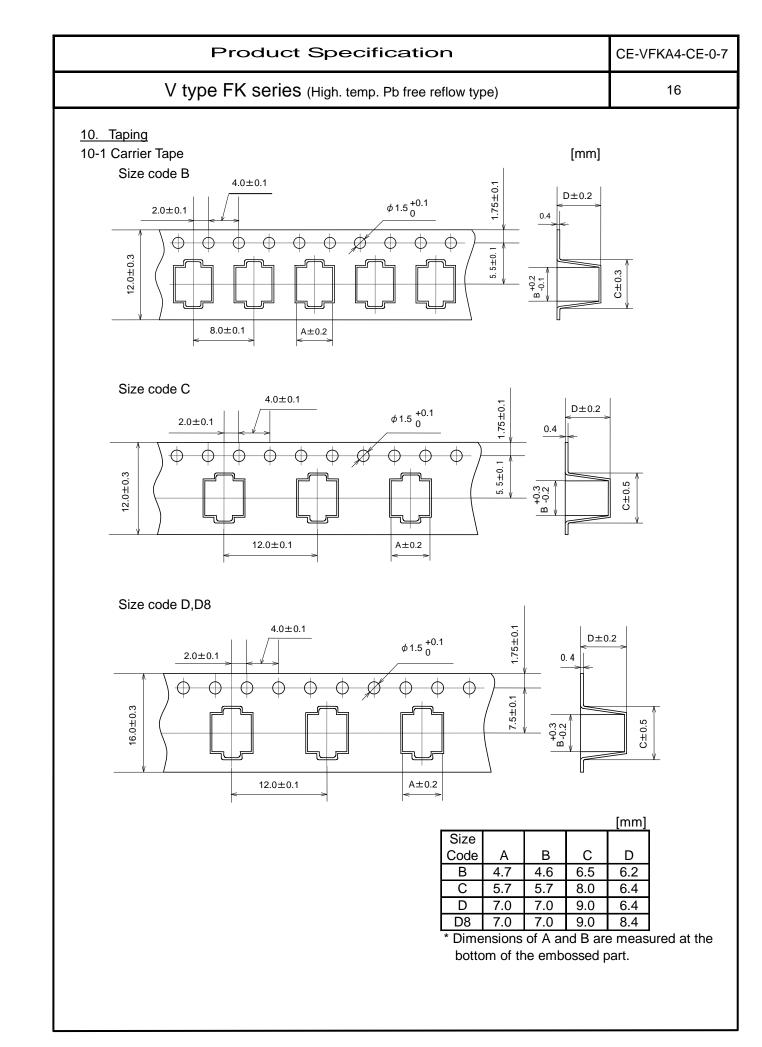
8. Other Characteristics

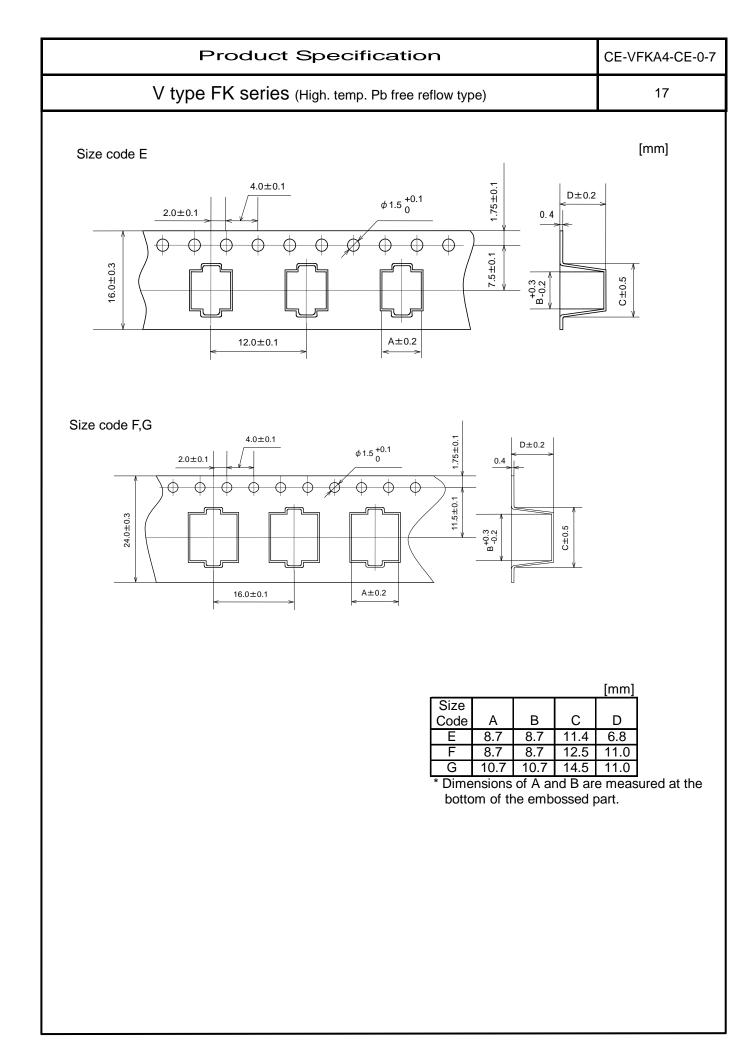
■ Table 1. Tangent of Loss Angle(tanδ)

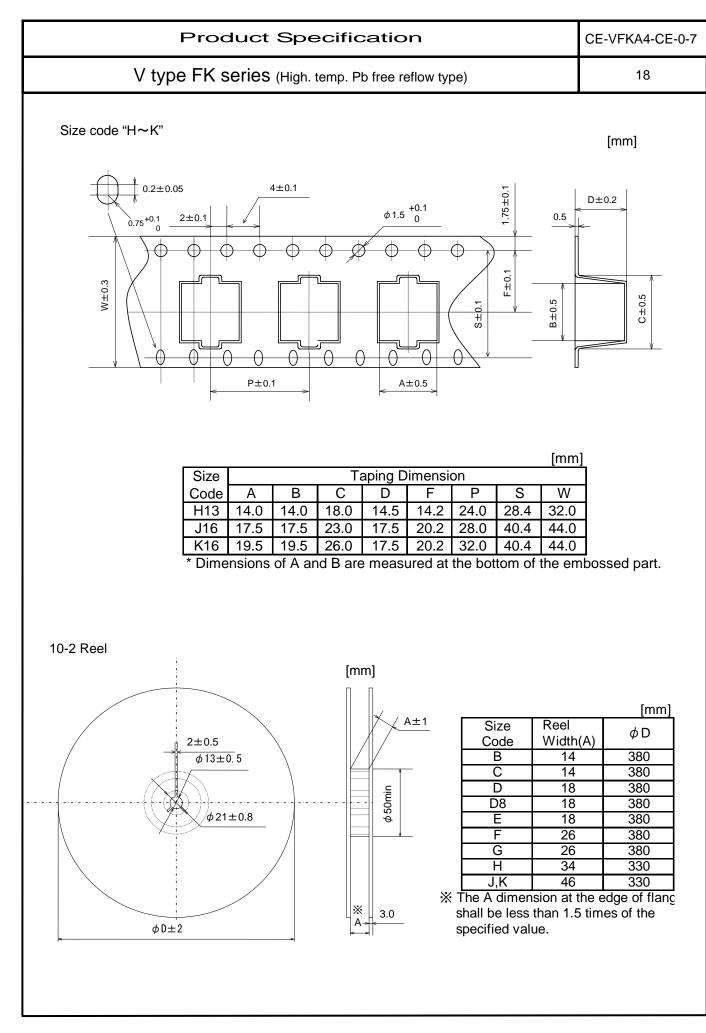

		0 - (,						
R.V.(V D.C.)	6.3	10	16	25	35	50	63	80	100
D.F.(tanδ)	0.26	0.19	0.16	0.14	0.12	0.12	0.10	0.08	0.07

■ Table 2. Characteristics at low temperature Impedance ratio (at 120Hz)

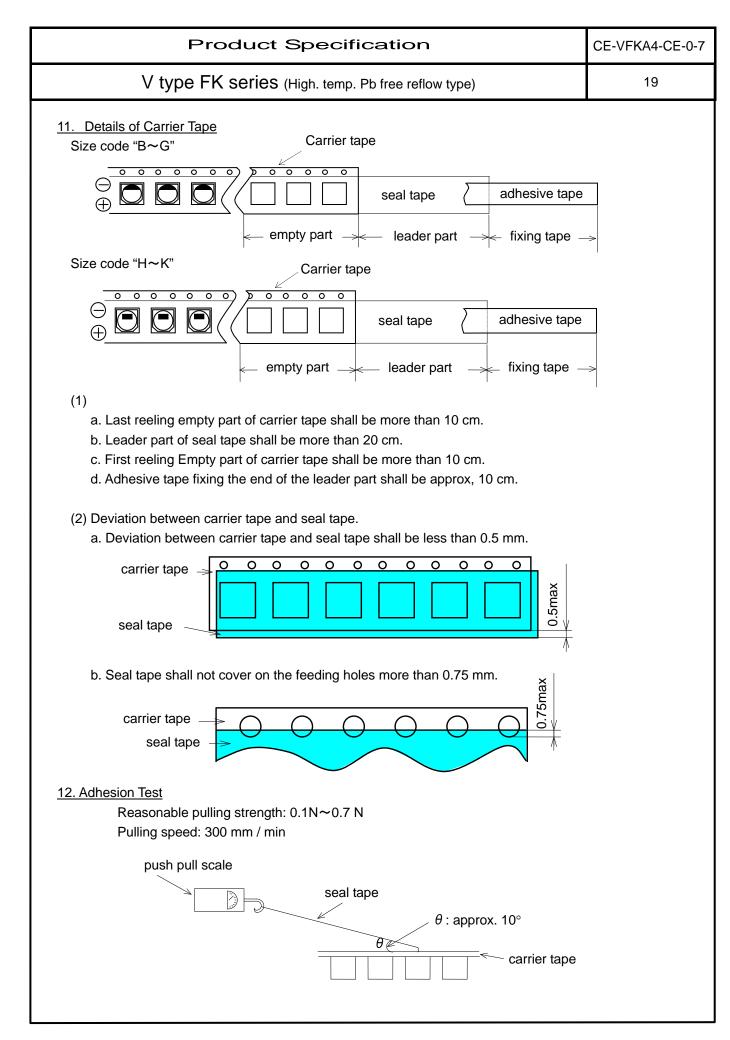
R.V.(V D.C.)	6.3	10	16	25	35	50	63	80	100
Z(-25°C)/Z(20°C)	2	2	2	2	2	2	2	2	2
Z(-40°C)/Z(20°C)	3	3	3	3	3	3	3	3	3
Z(-55°C)/Z(20°C)	4	4	4	3	3	3	3	3	3

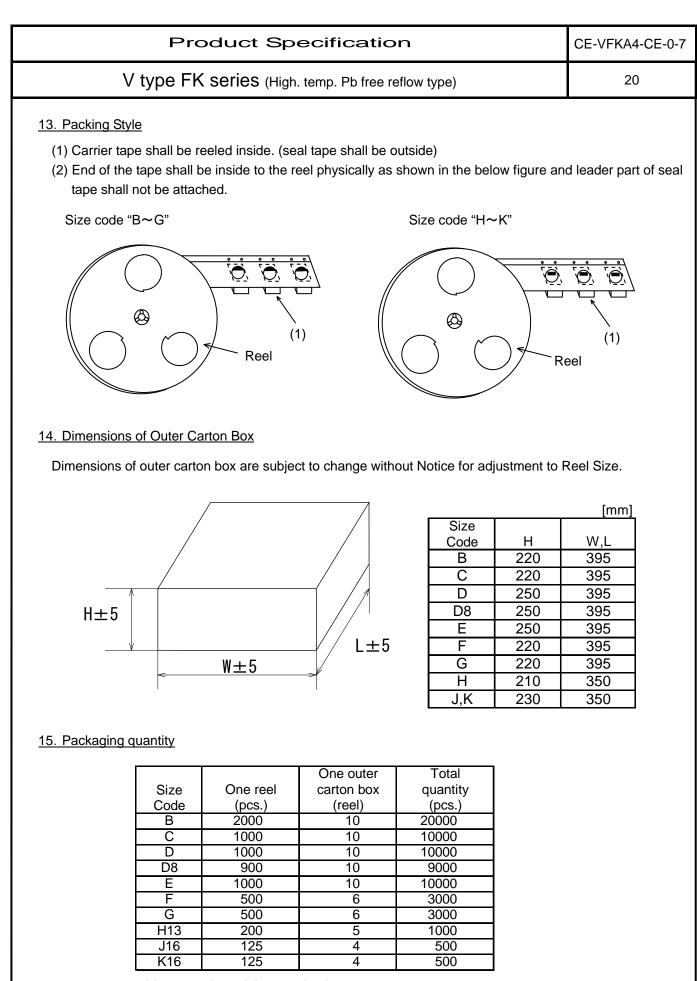

■ Table 3. Frequency Correction Factor of Rated Ripple Current

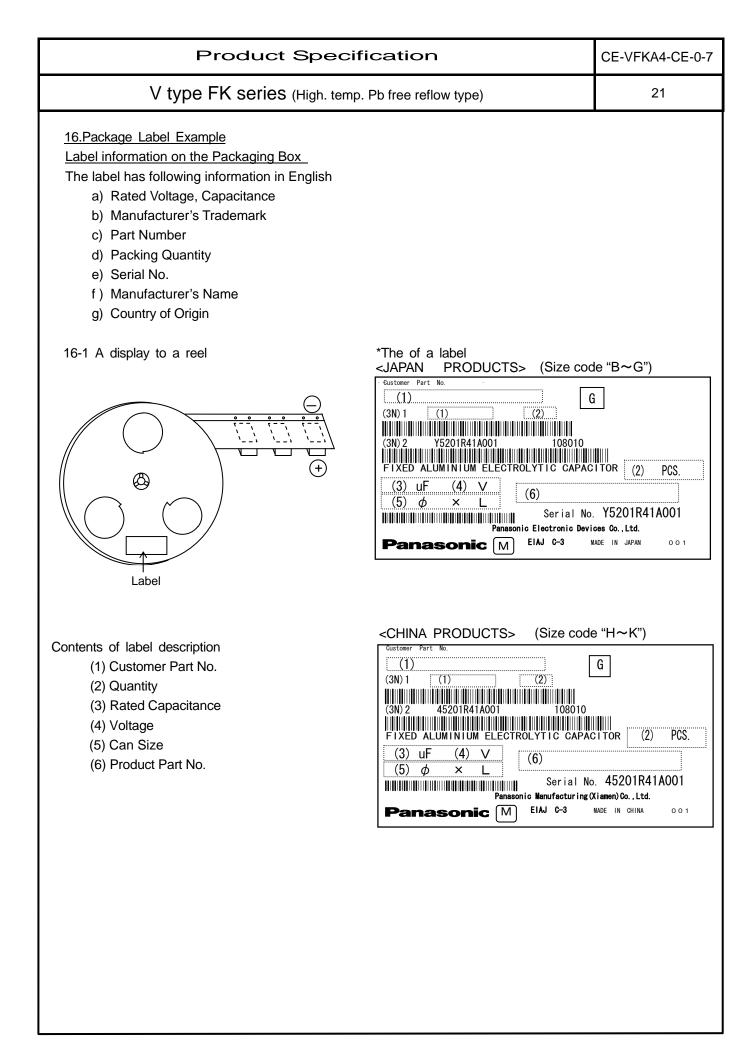

		Frequency (Hz)				
Size code	Cap. (µF)	120	1k	10k	100k~	
B∼G	100~470	0.65	0.85	0.95	1.00	
Breg	680~1800	0.70	0.90	0.95	1.00	
H13~K16	47~6800	0.75	0.90	0.95	1.00	

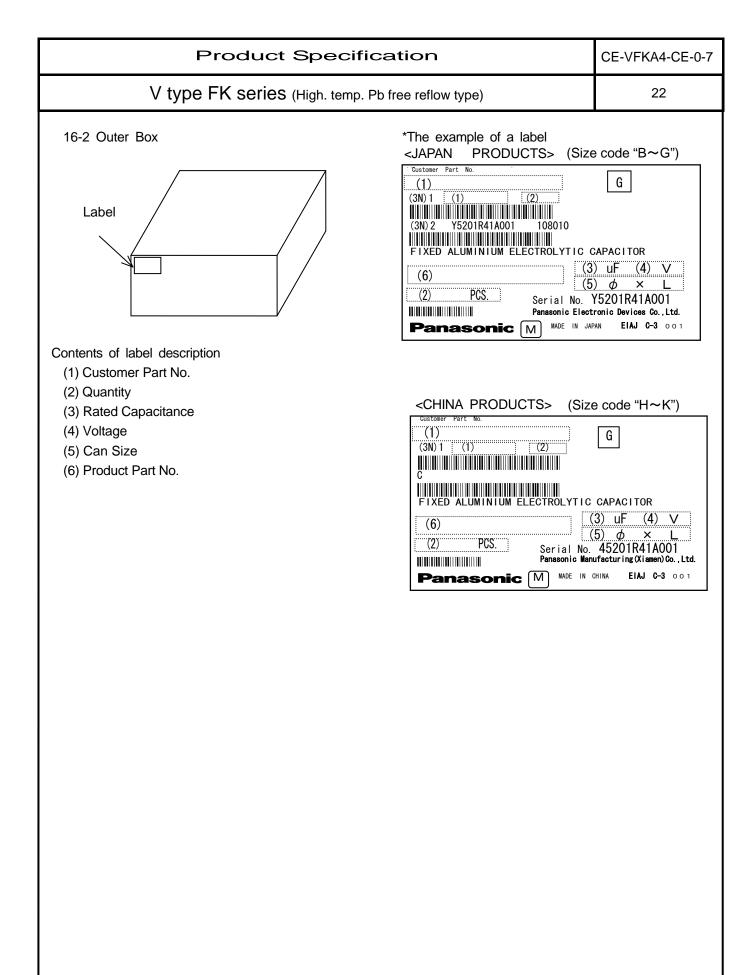


* Soldering Method : I.R. or I.R. + heated air.


(VPS Method is not Available.)




Panasonic Electronic Devices Co., Ltd.



Panasonic Electronic Devices Co., Ltd.

^{*} Let an order unit be 1 reel unit.

Product Specification	Guideline-ALV-S2-2
Application Guidelines	Guidelines-1
 * This specification guarantees the quality and performance of the product as individual components. Before use, check and evaluate their compatibility with installed in your products. * Do not use the products beyond the specifications described in this document. * Install the following systems for a failsafe design to ensure safety if these products are to be used in equip products may cause the loss of human life or other signification damage, such as damage to vehicles (auto lights, medical equipment, aerospace equipment, electric heating appliances, combustion/ gas equipment, disaster/crime prevention equipment. • The system is equipped with a protection circuit and protection device. • The system is equipped with a redundant circuit or other system to prevent an unsafe status in the ever * Before using the products, carefully check the effects on their quality and performance, and determined wf These products are designed and manufactured for general-purpose and standard use in general electroni These products are not intended for use in the following special conditions. 1. In liquid, such as Water, Oil, Chemicals, or Organic solvent 2. In direct sunlight, outdoors, or in dust 3. In vapor, such as dew condensation water of resistive element, or water leakage, salty air, or air with a gas, such as Cl2, H2S, NH3, SO2, or NO2 4. In an environment where strong static electricity or electromagnetic waves exist 5. Mounting or placing heat-generating components or inflammables, such as vinyl-coated wires, near the 6. Sealing or coating of these products or a printed circuit board on which these products are mounted, wir 7. Using resolvent, water or water-soluble cleaner for flux cleaning agent after soldering. (In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residue * Please arrange circuit design for preventing impulse or transitional volt	probile, train, vessel), traffic rotating equipment, and ht of a single fault. hether or not they can be used. c equipment. high concentration corrosive ese products th resin and other material s) hstantaneous high voltage, and functions of each product.
Electrolyte leakage damages printed circuit and affects performance, characteristics, and functions of cus 1.1 Operating Temperature and Frequency Electrical parameters for electrolytic capacitors are normally specified at 20 °C temperature and 120 Hz free These parameters vary with changes in temperature and frequency. Circuit designers should take these ch (1) Effects of operating temperature on electrical parameters a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance	quency. nanges into consideration. e (ESR) decreases.

- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies, capacitance and impedance decrease while tan δ increases.

b) At lower frequencies, heat generated by ripple current will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

- (1) Expected life is affected by operating temperature. Generally, each 10 °C reduction in temperature will double the expected life. Use capacitors at the lowest possible temperature below the upper category temperature.
- (2) If operating temperatures exceed the upper category limit, rapid deterioration of electrical parameter will occur and irreversible damage will result.

Check for the maximum capacitor operating temperatures including ambient temperature, internal capacitor temperature rise due to ripple current, and the effects of radiated heat from power transistors, IC's or resistors.

Avoid placing components, which could conduct heat to the capacitor from the back side of the circuit board.

(3) The formula for calculating expected life at lower operating temperatures is as follows ;

$$L_2 = L_1 \times 2^{\frac{T_1 - T_2}{10}}$$

- Guaranteed life (h) at temperature, T1 °C L
- Expected life (h) at temperature, T2 °C L_2
- T_1 : Upper category temperature (°C)
- Actual operating temperature, ambient temperature + temperature rise due to ripple current heating(°C) T_2 :

(4) Please use according to the lifetime as noted in this specification. Using products beyond end of the lifetime may change characteristics rapidly, short-circuit, operate pressure relief vent, or leak electrolyte.

Product Specification	Guideline-ALV-S2-2					
Application Guidelines	Guidelines-2					
1.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration of a capacitor's electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur, causing the pressure relief vent to operate and resultant leakage of electrolyte. Under extreme conditions, explosion and fire ignition could result. The leaked electrolyte is combustible and electrically conductive.						
 DC capacitors have polarity. Verify correct polarity before insertion. For capacitors. DC bipolar capacitors are not suitable for use in AC circuits. (2) Charge / Discharge Applications Standard capacitors are not suitable for use in repeating charge/discharge 						
 with your actual application condition. (3) Over voltage Do not apply voltages exceeding the maximum specified rated voltage. Voltage short periods of time. 	oltages up to the surge voltag	ge rating are acceptable for				
 Ensure that the sum of the DC voltage and the superimposed AC ripple vol (4) Ripple Current Do not apply ripple currents exceeding the maximum specified value. For high ripple currents. In addition, consult us if the applied ripple current is t Ensure that rated ripple currents that superimposed on low DC bias voltage 	high ripple current application to be higher than the maximu	ons, use a capacitor designed for im specified value.				
 1.4 Using Two or More Capacitors in Series or Parallel (1) Capacitors Connected in Parallel The circuit resistance can closely approximate the series resistance of the the capacitors. Careful wiring methods can minimize the possible application (2) Capacitors Connected in Series 						
Differences in normal DC leakage current among capacitors can cause volt The use of voltage divider shunt resistors with consideration to leakage cur 1.5 Capacitor Mounting Considerations (1) Double-Sided Circuit Boards Avoid wiring pattern runs, which pass between the mounted capacitor and the constant of the second sec	rrents can prevent capacitor v	voltage imbalances.				
(2) Land/ Pad Pattern	able of Board Land Size					
	B (φ4) 1 C (φ5) 1 D (φ6.3) 1	[mm] a b c .0 2.5 1.6 .5 2.8 1.6 .8 3.2 1.6 .8 3.2 1.6				
	F (φ8×10.2L) 3 G (φ10×10.2L) 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	J (φ16) 6	.0 5.7 2.0 .0 6.5 2.5 .0 7.5 2.5				
Land space						
 X The land pattern and size shall be decided in consideration of mountability, solderbility and strength. (3) Clearance for Case Mounted Pressure Relief (≧φ10 mm) Capacitors with case mounted pressure relief require sufficient clearance to allow for proper pressure relief operation. The minimum clearance are dependent on capacitor diameters as follows. (Dia 10mm ~ Dia 16mm : 2mm minimum , Dia 18mm : 3mm minimum) (4) Wiring Near the Pressure Relief (≧φ10 mm) Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief . Flammable, high temperature gas that exceeds 100° C may be released which could dissolve the wire insulation and ignite. (5) Circuit Board Patterns Under the Capacitor Avoid circuit board runs under the capacitor, as an electrical short can occur due to an electrolyte leakage. 16 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. • Between the cathode and the case and between the anode terminal and other circuit paths. 17 Capacitor Sleeve The laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. 						

Product Specification

Guideline-ALV-S2-2

Application Guidelines

Guidelines-3

2. Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for a long period of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be damaged and loss of electrolyte/shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before insertion. (3) Verify the correct hole spacing and land pattern size before insertion to avoid stress on the terminals. (4) For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperature of 350 °C for 3 seconds or less. (2) If a soldered capacitor must be removed and reinserted, avoid excessive stress on the capacitor leads. (3) Avoid physical contacts between the tip of the soldering iron and capacitors to prevent or capacitor failure. 2.4 Reflow Soldering (1) For reflow, use a thermal conduction system such as infrared radiation (IR) or hot blast. Vapor heat transfer systems (VPS) are not recommended. (2) Observe proper soldering conditions (temperature, time, etc.). Do not exceed the specified limits. ※ The Temperature on Capacitor top shall be measured by using thermal couple that is fixed firmly by epoxy glue. (3) Two times of reflow (The 2nd reflow must be done when the capacitor becomes normal condition regarding temperature.) (4) In our recommended reflow condition, the case discoloration and the case swelling might be slightly generated. But please acknowledge that these two phenomena do not influence the reliability of the product. The crack on top marking might be occurred by reflow heat stress. (5)But please acknowledge that it does not influence the reliability of the product. 2.5 Capacitor Handling after Soldering (1) Avoid moving the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal. (2) Do not use the capacitor as a handle when moving the circuit board assembly. (3) Avoid striking the capacitor after assembly to prevent failure due to excessive shock. 2.6 Circuit Board Cleaning (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up to 5 minutes and up to 60 °C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended for the purpose of protecting our environment. (2) Avoid using the following solvent groups unless specifically allowed in the specification ; Halogenated cleaning solvents : except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements based on the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor. Alkaline solvents : could react and dissolve the aluminum case. Petroleum based solvents : deterioration of the rubber seal could result. : deterioration of the rubber seal could result. Xylene Acetone : removal of the ink markings on the vinyl sleeve could result. (3) A thorough drying after cleaning is required to remove residual cleaning solvents that may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the Upper category temperature of the capacitor. (4) Monitor the contamination levels of the cleaning solvents during use in terms of electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. (5) Depending on the cleaning method, the marking on a capacitor may be erased or blurred. Please consult us if you are not certain about acceptable cleaning solvents or cleaning methods. 2.7 Mounting Adhesives and Coating Agents When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. Harden on dry adhesive or coating agents well lest the solvent should be left. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board 2.8 Fumigation In exporting electronic appliances with aluminum electrolytic capacitors, in some cases fumigation treatment using such halogen compound as methyl bromide is conducted for wooden boxes. If such boxes are not dried well, the halogen left in the box is dispersed while transported and enters in the capacitors inside. This possibly causes electrical corrosion of the capacitors. Therefore, after performing fumigation and drying make sure that no halogen is left. Don't perform fumigation treatment to the whole electronic appliances packed in a box.

Application Guidelines

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Exposure to temperatures above the upper category or below the lower category temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of a capacitor as a possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuiting the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.
- (3) A low-molecular-weight-shiroxane which is included in a silicon material shall causes abnormal electrical characteristics.

4. Emergency Procedures

- (1) If the pressure relief of the capacitor operates, immediately turn off the equipment and disconnect from the power source. This will minimize an additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas, which can exceed 100 °C temperatures. If electrolyte or gas enters the eye, immediately flush the eye with large amounts of water.
 - If electrolyte or gas is ingested by mouth, gargle with water. If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

- Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film.
- This surge current could cause the circuit or the capacitor to fail.

Storage period is one year. When storage period is over 12 months, a capacitor should be reconditioned by applying the rated voltage in series with a 1000 Ω current limiting resistor for a time period of 30 minutes.

For storage condition, keep room temperature (5°C~35°C) and humidity (45%~85%) where direct sunshine doesn't reach.

5.1 Environmental Conditions

- (1) Exposure to temperatures above the upper category or below the lower category temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

- When disposing capacitors, use one of the following methods.
- (1) Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).
- (2) Dispose as solid waste.

NOTE : Local laws may have specific disposal requirements which must be followed.